COMP2111 Assignment 3 2024 Term 1

Due: Thu 25 April, 23:59

Submission is through give and should consist of:

1. A single pdf file with typeset answers, maximum size 4Mb. Prose should be typed, not handwritten.
Use of I&TEX is strongly encouraged, but not required.

2. A file partner.txt with a single line on the format. z<digits> . This must be the zID of your
group partner. For individual submissions, write your own zID.

Submit your work using the web interface linked on the course website, or by running the following on a
CSE machine

give cs2111 assn3 assn3.pdf partner.txt

This assignment is to be done in pairs. Individual submissions are discouraged, but will be accepted. Only
one member of the pair should submit. Work out who will submit ahead of time—duplicate submissions
are extremely annoying to sort out.

Late submission is allowed up to 5 days (120 hours) after the deadline. A late penalty of 5% per day will
be deducted from your total mark.

Discussion of assignment material with others is permitted, but you may not exchange or view each
others’ (partial) solutions. The work submitted must be your own, in line with the University’s plagiarism
policy. Note in particular that attempting to pass off Al writing (e.g. ChatGPT output) as your own still
counts as plagiarism.

Background This assignment is an open-ended research task where you apply Hoare logic to an algo-
rithm of your choice.

This means you should start by choosing an algorithm! It’s your choice, but keep the following in mind:

¢ The algorithm should contain at least one loop.

* You need to find an algorithm that makes the tasks below feasible in the given timeframe. If the
algorithm is longer than 10-20 lines or so, you should probably choose something simpler.

* You need an algorithm that you can meaningfully specify with a Hoare triple, and reason about with
Hoare logic.

What does the last bullet point mean exactly? I'll give some examples. You want to avoid:

e Algorithms that are probabilistic, in the sense that they aren’t guaranteed to always give a correct
answer. An example is the Miller-Rabin primality test.

¢ Algorithms that give approximate answers only, such as numerical algorithms.
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¢ Concurrent or parallel algorithms.

¢ Algorithms that have fuzzy specifications, where it’s difficult to characterize precisely what it means
for the output to be correct. Examples include most algorithms in machine learning and image
processing.

¢ Algorithms that require non-compositional control flow operators, such as goto, break or continue.
(But you can probably find an alternative way to formulate the algorithm that doesn’t require these).

A good place to start looking for algorithms is the table of contents of your favourite algorithms text-
book [[CLRSog| Knu68, Knuég| Knuy3|, KTo6], or the Wikipedia list of algorithmsE]

Once you've found an algorithm, do ask your tutor, or Johannes, for input on your choice! We are happy
to offer advice on your choice.

'https://en.wikipedia.org/wiki/List_of_algorithms
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Problem 1 (30 marks)

Present your algorithm, giving at least the following information:

1. The name of the algorithm

2. The origin of the algorithm. Is it known Who invented it? Cite the original paper that introduced the
algorithm, if possiblef] Also cite any other sources you’ve consulted in preparing this assignment.

3. The purpose of the algorithm. What problem does the algorithm solve? What are the requirements
that the algorithm is designed to meet?]

4. Give pseudocode for the algorithm.

5. A brief explanation of the pseudocode, to help the reader understand the algorithm.

Problem 2 (70 marks)

1. Give a vocabulary containing the necessary features to express your algorithm in £, explaining the
intended meaning of each symbol when it’s not obvious.

For algorithms involving numbers, you can use the lectures for inspiration. For algorithms involving
things beyond that, such as arrays, trees, or pointers, there will be design decisions for you to make.
(10 marks)

2. Express your algorithm in £ using this vocabulary. (You may have already done so in Problem 1).

Where possible, use the existing primitives in £ (possibly including derived operators) to express
the algorithm. This may involve some translation, such as by replacing for loops with while loops.

If your algorithm requires operators that are not expressible in £, you may add them to £ provided
you can formulate a reasonable Hoare rule for it. If you're not sure how, ask us for advice. For
example, if your algorithm requires generating random integers in an interval, something like this
would do:

{(VIeZ.e<1<¢ — ¢[I/x]} x := Math.random(e,¢’) {9}

(10 marks)

3. Based on the requirements identified in Problem 1, write a formal specification for the algorithm, in
the form of a Hoare triple. Explain any requirements that your Hoare triple does not capture, and
why. (10 marks)

2For example, absent a groundbreaking archeological discovery, you may have difficulty finding the primary source for Eratos-
thenes’ sieve.
3Requirements here should be construed broadly. This includes functional requirements of the kind one can fit in Hoare triples

o

(“the output should be sorted”), as well as non-functional requirements (“the algorithm should run in O(n?) time”, “the algorithm

a7

should run in-place”, “the algorithm should be easier to understand than the competition”, ...)



4. Annotate your program with appropriate loop invariants for any loops present in your algorithm.
(10 marks)

5. Show that your annotations are correct, in the sense that they follow from the precondition, establish
the postcondition, and are re-established by every loop iteration.
This can take the form of an informal argument (for partial marks), or a complete annotation of the
program (for full marks). (20 marks)

6. If your algorithm is guaranteed to terminate, find a loop variant (aka measure) or a well-founded
order for every loop in your program. If it is not, explain why. (10 marks)

The mark distribution and criteria for the above sub-questions is indicative only, and may be adjusted
depending on your choice of algorithm. In particular:

e If you chose a more difficult algorithm, expectations on completeness and formality decrease some-
what. (Note that a shorter algorithm is not necessarily easier to verify than a long one.)

* A failure to solve a problems may still yield marks. For example, a compelling description of the
difficulties you encountered when attempting to formulate an invariant.

Assorted advice

Arrays

Many algorithms require arrays. Adding arrays to £ is just a matter of adding array indexing etc. to
the vocabulary. To save you some time though, here is a tempting, but unsound, way to formalise array
updates:

UNSOUND RULE DO NOT USE

{ole/x[i]]} x[i] := e {o}

The issue here is that ¢ can make claims about x[i] without mentioning x[i] directly. For example, the
following is of course not a valid Hoare triple: {x is sorted} x[0] := 17 {x is sorted} — but it is provable
with the incorrect rule above.

The solution is to model array updates as updates to the array as a whole. That is, model x[i] := e as
x := x[i — e]|, where the RHS reads “the array x, but with index i updated to hold the value e. With that
change, array updates can be handled by the standard assignment rule.

This illustrates the more general point that the Hoare logic assignment rule is specifically designed for
situations where the LHS is a variable, not a compound expression.

Pointers

Pointers are tricky, and this assignment is no exception.

If you're feeling adventurous enough to do a program with non-trivial use of pointers, you'll need a
slightly different notion of state than we’ve used in the course so far. We've mostly been content to let



states be mappings from variable names to values; for pointer programs this will fail to capture the effects
of aliasing, where updating the value pointed to by x may change the value pointed to by y indirectly.

My recommendation is to let the state have two components: the first is the standard mapping from
variable names to values, but with the minor twist that values can be memory addresses. The second
component is the memory, which is a mapping from memory addresses to values.

Scope

If your algorithm turns out to be too complicated to verify, one way to reduce the scope is to axiomatise
auxiliary functions. By this, I mean specifying auxiliary functions with appropriate Hoare triples, and
then using those Hoare triples (without proof) in the correctness proof for the main function.

As an example, if you're verifying merge sort, you might axiomatise an auxiliary merge function.

This may feel a bit like cheating, but it's done all the time in real-world verification projects: somewhere,
you need to draw the boundary between what'’s verified and what isn’t. Even if some code is left out of
scope, the verification is still valuable: it tells you exactly where you need to beware of bugs.
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